Принцип работы оптических устройств

Важные информационные данные на тему: "Принцип работы оптических устройств" с описанием сопутствующих проблем и способов их решения. За индивидуальными консультациями всегда можно обратиться к дежурному специалисту.

Принцип работы оптических устройств

ОПТИЧЕСКИЕ ПРИБОРЫ — различные совокупности оптических (см.), устройство которых основано на законах распространения света или на использовании свойств света. Обязательными частями оптических и оптико электронных приборов являются линзы, призмы, зеркала, пластинки и… … Большая политехническая энциклопедия

ОПТИЧЕСКИЕ ПРИБОРЫ — устройства, в которых излучение какой либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы,… … Энциклопедия Кольера

Оптические приборы — I. Из отдельных чечевиц, ахроматизированных и неахроматизированных, комбинируются различнейшие О. системы , из которых вообще рассматриваются лишь центрированные, т. е. такие, у которых О. оси отдельных составляющих чечевиц совпадают. В науке,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Оптические приборы — технические устройства, действия которых основано на волновых свойствах света, позволяющих получать изображения объектов с помощью оптических систем (линз, призм, зеркал и т.п.). О.п. подразделяются: на приборы наблюдения; приборы измерения… … Пограничный словарь

Оптические приборы — технические устройства, действие которых основано на волновых свойствах света, позволяющих получать изображения объектов с помощью оптических систем из линз, призм, зеркал и т. п. Осион ные части О. п. объектив и окуляр. По назначению О. п.… … Словарь военных терминов

ОПТИЧЕСКИЕ ИНСТРУМЕНТЫ — (от слова оптика). Инструменты, основанные на свойствах света и употребляемые для различных целей. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ОПТИЧЕСКИЕ ИНСТРУМЕНТЫ от слова оптика. Инструменты, основанные на… … Словарь иностранных слов русского языка

Приборы оптические — устройства, позволяющие получать изображение объектов с помощью оптических систем (линз, призм, зеркал и т.п.). Основными частями П.о. являются объектив и окуляр. Характеристики П.о.: увеличение, поле зрения, входной и выходной зрачки, удаление… … Словарь черезвычайных ситуаций

Оптические расходомеры — Оптические (лазерные) расходомеры расходомеры, работа которых основывается на использовании зависимости оптических эффектов от скорости движения жидкости или газа. Содержание 1 Виды оптических расходомеров … Википедия

Оптические свойства горной породы — – свойства, характеризующие поглощение, пропускание и отражение электромагнитных волн оптического диапазона в горной породе. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии: Абразивное оборудование, Абразивы,… … Энциклопедия терминов, определений и пояснений строительных материалов

Оптические датчики — Содержание 1 Определение 2 Строение оптических датчиков … Википедия

Источник: http://dic.academic.ru/dic.nsf/ruwiki/104715

Назначение и области применения оптических приборов

Оптические приборы — устройства в которых происходит преобразование (пропускание, отражение, преломление) видимого света. Предназначены для получения увеличенного изображения сильно удаленных, либо малоразмерных объектов и применяются для более удобного рассмотрения тех или иных предметов в дневное и ночное время. Они могут увеличивать, уменьшать, улучшать качество изображения, или давать возможность увидеть искомый предмет косвенно.

Широкое применение оптические приборы получили уже примерно в 1280-х годах в Италии. С тех пор человечество неразрывно связано со своими изобретениями — оптическими приборами, непрерывно совершенствуемыми и позволяющими человеку заглянуть далеко за горизонт или наоборот — в микромир, то есть туда, где невооружённым глазом уже ничего не увидишь. Сравнительно недавно разрабатываются оптические приборы ночного видения: ночные монокуляры, бинокли ночного видения, охотничьи прицелы ночного видения, позволяющие видеть практически в полной темноте. И сегодня такие приборы также доступны для бытового применения.

Исходя из их назначения, конструкции и технических характеристик, оптические приборы можно разделить на основные группы:

• Оптический бинокль.
Бинокль позволяет наблюдать за удаленными объектами, используя оба глаза. Из-за стереоскопического эффекта существенно повышается удобство и информативность наблюдения и снижается утомляемость глаз по сравнению с наблюдением одним глазом. Различают дневные и ночные оптические бинокли. Используя принцип многократное усиление света, попавшего в диапазон, открытый для глаза смотрящего, бинокль ночного видения позволяет вести наблюдение ночью и в условиях недостаточной освещенности. Если, в условиях сумерек или ночной мглы Вы хотите не только смотреть на что-то, но еще и осуществлять какие-то действия, Вам помогут очки ночного видения. Наличие в конструкции очков специальной маски, которая позволяет закрепить прибор на голове наблюдателя, позволяет вести наблюдение и одновременно что-то делать руками, которые остаются свободными.

• Оптический монокуляр.
Монокуляры имеют один окуляр и один объектив. Отсюда, собственно, и название: «моно» — значит «один». Уступая по качеству изображения биноклям, монокуляры имеют существенное преимущество в размерах по сравнению с ними. Монокуляры обычно применяют, когда необходима минимальная масса прибора при достаточном увеличении и высоком качестве изображения, и при этом допустимо некоторое снижение удобства наблюдения по сравнению с соответствующим биноклем. Также как и бинокли, выпускаются ночные монокуляры для наблюдения в темное время суток, в том числе и комплекте с маской.

• Зрительная (подзорная) труба.
Основное назначение зрительных труб — это наблюдение за сильно удаленными или малоразмерными объектами с максимально возможным увеличением. Среди зрительных труб редко можно встретить модели с большим диаметром выходного зрачка и большой светосилой, у большинства приборов эти показатели минимизированы, и на первый план выходит такая характеристика как высокая кратность. Большинство зрительных труб, кроме компактных «карманных» моделей с небольшой кратностью, имеют крепление на штатив.

• Оптический телескоп.
Телескоп предназначен для наблюдения удаленных объектов ночного неба. Все существующие телескопы по конструкции можно разделить на две большие группы: зеркальные (рефлекторы) и линзовые (рефракторы). Основные характеристики телескопов: диаметр объектива и увеличение. Чем больше диаметр объектива, тем больше света он соберет, и тем более слабые объекты станут в него видны. Наиболее сложные модели телескопов имеют автоматический привод, позволяющий отслеживать объекты вслед за их перемещением по ночному небу. Комплектуются штативами, так-как наблюдение «с рук» в телескоп невозможно.

• Оптический микроскоп и лупа.
Микроскоп (от греческих слов «маленький» и «смотрю») — оптический прибор, предназначенный для получения увеличенных изображений того или иного объекта с целью изучения этого объекта. Микроскоп применяется, главным образом, в лабораториях ученых — медиками, биологами и т.д. При помощи микроскопа конструкторы определяют форму, размеры и многие другие параметры для каких-нибудь микроэлементов сложного технического устройства.

• Лазерный дальномер.
Лазерный дальномер — это электронно-оптический прибор, применяемый для измерения расстояний до объектов. Можно измерить расстояние до любого предмета на местности, находящегося в прямой видимости, с погрешностью около одного метра. Лучше всего производится измерение дальности до крупных объектов с высокой отражающей способностью, хуже всего — до мелких объектов интенсивно поглощающих лазерное излучение. Лазерный дальномер может быть выполнен в виде монокуляра или бинокля с увеличением от 2 до 7 крат. Некоторые производители встраивают дальномеры в другие оптические приборы, например в оптические прицелы.

Читайте так же:  Прошу черную зарплату

Источник: http://opticdevices.ru/article_7.html

ОПТИЧЕСКИЕ ПРИБОРЫ

ОПТИЧЕСКИЕ ПРИБОРЫ, устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете. При первичной оценке качества прибора рассматриваются лишь основные его характеристики: способность концентрировать излучение – светосила; способность различать соседние детали изображения – разрешающая сила; соотношение размеров предмета и его изображения – увеличение. Для многих приборов определяющей характеристикой оказывается поле зрения – угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила.

Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.

Увеличение.

Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения H΄, то увеличение m определяется по формуле m = H΄/H. Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы. Важной характеристикой приборов для визуального наблюдения является видимое увеличение М. Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tg b /tg a , где a – угол, под которым наблюдатель видит предмет невооруженным глазом, а b – угол, под которым глаз наблюдателя видит предмет через прибор.

При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик – светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры.

Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

Микроскопы.

Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом. Из схемы рис. 1 можно определить размер увеличенного изображения. Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения (рис. 1):

где f – фокусное расстояние линзы, v – расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации. M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза. В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат. См. также МИКРОСКОП.; ЭЛЕКТРОННЫЙ МИКРОСКОП.

Телескопы.

Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы (рис. 2). Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на рис. 2), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b, исходящий не из тех точек предмета, откуда пришли лучи a и c, падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b . Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы рис. 2 можно получить выражение для видимого увеличения M телескопа:

Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.

Бинокли.

Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего – Порро), в каждую из которых входят две прямоугольные призмы (с основанием под 45 ° ), ориентированные навстречу прямоугольными гранями. Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6–9 ° ), биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения. В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, – его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличением (в кратах) и диаметром объектива (в миллиметрах), например,

Оптические прицелы.

В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия.

Читайте так же:  Работа по совместительству у одного работодателя

Дальномеры.

Осветительные и проекционные приборы.

Прожекторы.

В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.

Диаскоп.

В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране (рис. 4). В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же.

Спектральные приборы.

Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.

Спектрометр.

В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.

Спектрограф.

Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210–800 нм), стекла (360–2500 нм) или каменной соли (2500–16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области. См. также АСТРОНОМИЯ И АСТРОФИЗИКА; ОПТИКА.

Борн М., Вольф Э. Основы оптики. М., 1970
Ефремов А.А. и др. Сборка оптических приборов. М., 1978
Справочник конструктора оптико-механических приборов. Л., 1980
Кулагин С.В. Основы конструирования оптических приборов. Л., 1982
Погарев Г.В. Юстировка оптических приборов. Л., 1982

Источник: http://www.krugosvet.ru/enc/nauka_i_tehnika/tehnologiya_i_promyshlennost/OPTICHESKIE_PRIBORI.html

Принцип работы оптической мыши

Все оптические мыши базируются на общем принципе работы, который был изобретен в исследовательских лабораториях корпорации Hewlett-Packard, в ее подразделении Agilent Technologies. На сегодняшний день Agilent Technologies, Inc. — монополист на рынке оптических сенсоров для мышек, никакие другие компании такие сенсоры не разрабатывают.

Рисунок 3. Принцип работы оптической мыши

Принцип действия системы состоит в следующем: с помощью светодиода, и системы фокусирующих его свет линз, под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы — процессора обработки изображений, который делает снимки поверхности под мышью с высокой частотой (кГц). Причем микросхема не только делает снимки, но сама же их и обрабатывает, так как содержит две ключевых части: систему получения изображения Image Acquisition System (IAS) и интегрированный DSP процессор обработки снимков.

Рисунок 4. Изображение рабочей поверхности

На основании анализа ряда последовательных снимков интегрированный DSP процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей Х и Y, и передает результаты своей работы вовне по последовательному порту.

Рисунок 5. Конструкция оптической системы мыши

Система оптического слежения мышей, помимо микросхемы-сенсора, включает еще несколько базовых элементов. Держатель (Clip) в который устанавливаются светодиод (LED) и непосредственно сама микросхема сенсора (Sensor). Эта система элементов крепится на печатную плату (PCB), между которой и нижней поверхностью мыши (Base Plate) закрепляется пластиковый элемент (Lens), содержащий две линзы. Оптимальное расстояние от элемента Lens до отражающей поверхности под мышью должно попадать в диапазон от 2.3 до 2.5 мм. Это рекомендации производителя сенсоров.

Оптические сенсоры

Первыми массово выпускаемыми оптическими сенсорами стали микросхемы HDNS-2000. Эти сенсоры имели разрешение 400 cpi (counts per inch) и были рассчитаны на максимальную скорость перемещения мыши в 12 дюймов/с (около 30 см/с) при частоте осуществления снимков оптическим сенсором в 1500 кадров в секунду. Допустимое (с сохранением стабильной работы сенсора) ускорение при перемещении мыши для чипа HDNS-2000 — не более 0.15 g.

Затем на рынке появились микросхемы оптических сенсоров ADNS-2610 и ADNS-2620. Оптический сенсор ADNS-2620 уже поддерживал программируемую частоту съемки поверхности под мышью, с частотой в 1500 либо 2300 снимков/с. Каждый снимок делался с разрешением 18х18 пикселей. Для сенсора максимальная рабочая скорость перемещения по прежнему была ограничена 12 дюймами в секунду, зато ограничение по допустимому ускорению возросло до 0.25 g,

Вышедший вскоре чип ADNS-2051 представлял собой гораздо более мощное решение, чем микросхемы HDNS-2000 или ADNS-2610. Этот сенсор уже позволял программируемо управлять разрешением оптического датчика, изменяя таковое с 400 до 800 сpi и допускал регулировку частоты снимков поверхности: 500, 1000,1500, 2000 или 2300 снимков/с. Величина снимков составляла всего 16х16 пикселей. При 1500 снимках/с предельно допустимое ускорение мыши составляло по прежнему 0.15 g, максимально возможная скорость перемещения — 14 дюймов/с.

Сенсор ADNS-2030 разрабатывался для беспроводных устройств, а потому имел малое энергопотребление, требуя 3.3 В питания. Чип также поддерживал энергосберегающие функции, например функцию снижения потребления энергии при нахождении мыши в состоянии покоя ( power conservation mode during times of no movement), когда по прошествии одной секунды, если мышь не перемещалась сенсор переходил в режим энергосбережения. Что касается остальных ключевых характеристик сенсора, то они не отличались от таковых у ADNS-2051.

Такими были первые оптические сенсоры. Большой проблемой, возникающей при передвижении оптической мыши по поверхностям, особенно с повторяющимся мелким рисунком, являлось то, что процессор обработки изображений порой путал отдельные похожие участки монохромного изображения, получаемые сенсором и неверно определял направление перемещения мыши. Кроме того при слишком быстром перемещении мыши сенсор мог вообще утратить всякую связь между несколькими последующими снимками поверхности.

Читайте так же:  Форма справки для устройства на работу

Оптический сенсор ADNS-3060, по сравнению со своими предшественниками, обладает впечатляющим набором характеристик. Допустимая максимальная скорость перемещения манипулятора выросла до 40 дюймов/с а ускорение выросло в сто раз, и достигло величины 15 g. Программируемая скорость осуществления снимков поверхности оптическим сенсором у новой модели чипа превышает 6400 кадров/с. Причем чип ADNS-3060 может сам осуществлять подстройку частоты следования снимков для достижения наиболее оптимальных параметров работы, в зависимости от поверхности, над которой перемещается мышь. Разрешение оптического сенсора по прежнему может составлять 400 или 800 cpi. Осуществляемые сенсором ADNS-3060 снимки поверхности (кадры) имеют разрешение 30х30 и представляют собой все ту же матрицу пикселей, яркость каждого из которых закодирована 8-ю битами, т.е. одним байтом (соответствует 256 градациям серого для каждого пикселя).

После того как интегрированный DSP процессор обработает данные снимков, он вычисляет относительные значения смещения манипулятора вдоль осей X и Y, занося данные об этом в память микросхемы ADNS-3060. В свою очередь микросхема внешнего контроллера (мыши) через последовательный порт может читать эти сведения из памяти оптического сенсора с частой примерно 100 Гц. Инициатором передачи данных является внешний контроллер, сам оптический сенсор осуществляет только хранение информации о перемещении. Поэтому вопрос оперативности (частоты) слежения за перемещением мыши во многом лежит на «плечах» микросхемы внешнего контроллера.

Рисунок 6. Структурная схема оптического сенсора ADNS-3060

Рекомендуемая рабочая температура микросхемы ADNS-3060 от 0 0С до +40 0С. Хотя сохранение рабочих свойств своих чипов Agilent Technologies гарантирует в диапазоне температур от -40 0С до +85 0С.

Источник: http://studbooks.net/2362211/tehnika/printsip_raboty_opticheskoy_myshi

Оптические устройства

Оптические устройства — частные виды оптических систем, включающие совокупность оптических элементов (линз, групп линз — например объективы, окуляры, конденсоры, зеркала, диафрагмы, призмы, световодов и др.). Оптические устройства создают для реализации технических задач.

Оптические устройства обычно представляют собой функционально-законченные технические комплексы, состоящие из отдельных модулей (оптических систем, механических систем, электронных систем управления, и др.).

Видео (кликните для воспроизведения).

Искусственные технические оптические системы преобразуют пучки фотонов или квантов (световые лучи, волны) от объектов, по заданным параметрам, в требуемые виды оптических изображений или светового потока (для рассмотрения увеличенных оптических изображений, для анализа свойств волны, для светового оборудования, медико-билогических средств и др.). Нередко оптические устройства предназначены для фиксации оптических изображений (в светочувствительном слое, на фотосенсорах, и т. д.).

Естественные системы, как совокупность оптических или оптикобиологических элементов (хрусталик, зрачок, сетчатка и др.), образуют зрительные органы животого мира, органы зрения — глаза и обеспечивают формирование первичного оптического изображения объектов на сетчатке глаза).

Содержание

Общие сведения [ править ]

В зависимости от расположения центров кривизны всех преломляющих поверхностей оптической системы на одной прямой (именуемой главной оптической осью системы) они могут быть центрированными, или (если сохраняются гомоцентричность пучков и изображение геометрически подобно предмету) идеальными оптическими системами.

Все источники световой энергии света — излучатели не зависимо от природы получения светового луча (от нагрева излучателя, лазерных источников излучения, термоядерных излучений и других источников, преобразующие в свет другие формы или виды движения материи (тепловые, химические, электрические и т. п.) не являются элементами рассматриваемых оптических систем. Источник света является самостоятельным материальным объектом, который попав в оптическую систему преобразуется, трансформируется этой оптической системой.

Источники света могут быть образованы в свою очередь другими оптическими системами, которые независимые и не связаны с рассматриваемыми ОС. (Например, Осветительные приборы — ОС являются источниками света для других ОС — фотовидеоаппаратуры, киноаппаратуры и др.).

Виды оптических систем [ править ]

Оптические системы разделяются на натуральные (биологические) и оптические системы, созданные человеком .

Оптические натуральные (биологические) системы [ править ]

К природным (биологическим) оптическим системам относятся системы, существующие в природе. К оптическим биологическим системам относятся, например, глаза.

Переход от большего к меньшему [ править ]

Нанотехнологии подразумевают методы создания микроскопических устройств с помощью всё меньших и меньших инструментов либо соответствующих методов. Конструкторы и технологи стремятся создать меньшие устройства при использовании больших, чтобы их использовать в нужных решениях.

Много технологий начиная от обычных методов применения, например, кремния как твердого тела в настоящее время при изготовлении микропроцессоров теперь способны выполнять функции, присущие элементам меньших чем 100нанометров, благодаря новым нанотехнологиям. Гигантские накопители на жестких дисках на основе магнитосопротивления уже заменяются малогабиритными устройствами и при изготовлении и работе используются нанотехнологии от большего к меньшему с использованием метода смещение атомного слоя (ALD). Питер Грзаджк 0кснберг и Альберт Ферт получили Нобелевскую премию по Физике за открытия Гигантского магнитосопротивления и вкладов в область спинтроники в 2007 году.

Методы твердого тела могут также использоваться при создании устройств, известные как наноэлектомеханические (en:nanoelectromechanical, NEMS) системы — развитие с микроэлектромеханических систем (MEMS).

‎Разрешение современных атомных силовых микроскопов позволяют внести химикат на поверхность в желательном образце в процессе, названном Субмикронная литография (то есть техника литографии исследования просмотра, где используется силовой микроскоп, чтобы передать молекулы поверхности через растворитель мениск. Эта техника позволяет копировать элементы поверхности с размерами до 100 нм). Это сочетается с нарастающим объёмом внедрения методов субмикронной литографии. Например, сосредоточенные ионные потоки могут непосредственно удалить материал (ионное травление), или внести материал на подложку.

Нанооптика [ править ]

В наносозданной среде получен эффект взаимодействия электромагнитных волн с сильным магнитным ответом в зоне видимого спектра электромагнитных волн («видимых-легких частот»), включая полосу с отрицательным магнетизмом. Среда сделана из электромагнитночувствительных двойных пар золотых точек с геометрией и симметрией, тщательно разработанной на нанометрическом уровне. Возникающий магнитный ответ получен в зоне частот 600—700 ТГц (10 12 Гц), в диапазоне зелёный — часть фиолетового цветов получается благодаря возбуждению антисимметричного плазменного резонанса. Высокочастотная проходимость проявляет себя качественно с новым эффектом оптического взаимодействия в данных условиях применения нанотехнологий. Это впервые показывает возможность применения электромагнетизма в зоне видимых частот и прокладывает путь в видимой оптике для получения оптических систем с лучшими показателями преломления, прозрачности к определённым лучам света. [1]

Читайте так же:  Банки звонят родственникам

Оптические достижения (разработки) [ править ]

К оптическим разработкам относятся открытия, изобретения, технологии (нанотехнология), используемые на практике, реализованные в оптическом оборудовании, оптических приборах, измерительной оптической аппаратуре, микроскопы, Медицинское оборудование, фототехника, оптические материалы, Медикобиологические оптические разработки, Оптические биоинженерные технологии и т. д.

К оптическим системам также относится элементная база сложніх устройств, єлементы оптических приборов часто называют оптическими деталями.

Оптические приборы (микроскопы, ультрамикроскопы и т. д.) предназначены для управления спектром видимых электромагнитных волн, световых лучей (фотонов) с целью получения нужного изображения для его рассмотрения или для анализа одного из множеств характерных свойств волны.

Распространённые оптические устройства [ править ]

Сложные устройства [ править ]

  • Общетехнические устройства
    • Телескоп
    • Микроскоп
    • Ультрамикроскоп
    • Спектроскоп
    • Оптический измерительный прибор
    • Видеоаппаратура
    • Киноаппаратура
  • фототехника
    • Фотоаппарат
    • Объектив
    • Светофильтр
    • Дихроические фильтры
    • Дихроическая призма
  • Медицинское оборудование
    • Бронхоскоп, Цистоскоп
  • Оптические биоинженерные технологии
    • Бионический глаз

Некоторые важные оптические системы и их элементы [ править ]

  • Очки
  • Бинокль и Подзорная труба
  • Линза и Лупа
  • призма
  • Зеркало
  • Диафрагма
  • Прозрачная пластинка, пластинка в полволны, пластинка в четвертьволны
  • Оптический клин
  • Оптическая линейка
  • Светофильтр
  • Щели
  • Поляризатор
  • Дифракционная решетка
  • Зонная пластинка
  • Модулятор
  • Оптические материалы
  • Оптоволокно (Световод)
  • Медикобиологические оптические разработки
  • Спектроскоп

Оптические материалы [ править ]

К оптическим материалам можно отнести прозрачные стёкла и светофильтры, полимеры с органическими красителями для квантовой электроники, материалы черного цвета для чернения поверхностей и герметизации фотодиодов, оптоволокно, эпоксидный компаунд для герметизации оптоэлектронных приборов, оптические клеи и т.д.

Оптические детали [ править ]

Элементы оптических приборов называют оптическими деталями.

Любые детали приборов могут взаимодействовать со светом, но далеко не все являются оптическими, предназначенными для его изменения (корпус, винты, оправы линз). С другой стороны, совокупность беспорядочно разбросанных оптических деталей также не образует оптические детали. (Такие оптические детали участвуют при изготовлении приборов или существуют как запчасти).

Структура оптических систем [ править ]

Обычно в сложных оптических системах выделяют несколько подсистем, имеющих самостоятельное функциональное назначение: объектив и окуляр в микроскопе или зрительной трубе; коллиматор, диспергирующая система и камера в спектрографе. Подсистемы, в свою очередь, можно делить на меньшие подсистемы, вплоть до оптических деталей, которые неразложимы с функциональной точки зрения.

Близкие понятия [ править ]

Следует различать понятия оптические системы, оптические схемы и оптические приборы (оборудование, принадлежности и др. устройства).

  • Оптические схемы — это графическое представление процесса изменения света в оптических системах. Кроме оптических подсистем на оптических схемах показывают излучатели и некоторые другие вспомогательные элементы.
  • Приборы называют оптическими, если хотя бы одна их основная функция выполняется оптической системой. Таким образом, наличие в приборах оптических систем служат необходимым, но не достаточным признаком оптического прибора. Например, добавление к логарифмической линейке лупы, облегчающей отсчет, не делает линейку оптическим прибором. ОС являются обязательной и необходимой частью оптических приборов, несмотря на то, что стоимость их изготовления может быть сравнительно малой. Основные функции некоторых приборов выполняются не только оптическими, но и другими системами: механической — нивелир, теодолит, электронной — телекамера.

Назначение и устройство оптических приборов обуславливают многообразные функции их оптических систем. Типичная функция оптических систем (и/или их подсистем) — формирование оптических изображений. Они выступают в качестве преобразователей одних световых пучков в другие. Оптические системы, предназначенные для создания требуемых изображений, называются иконическими.

Источник: http://traditio.wiki/%D0%9E%D0%BF%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D1%83%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B0

Оптические изоляторы. Принцип работы и способ применения в ВОСП.

Оптические изоляторы.

Оптический сигнал, распространяясь по волокну, отражается от различных неоднородностей, в особенности от мест сухого стыка, образуемых оптическими соединителями. В ре­зультате такого отражения часть энергии возвращается обратно. Если в качестве источников излучения используются лазерные диоды, то отраженный сигнал, попадая в резонатор лазе­ра, способен индуцировано усиливаться, приводя к паразитному сигналу. Особенно это не желательно, когда источник излучения генерирует цифровой широкополосный сигнал (>100 МГц), или аналоговый широкополосный сигнал (в смешанных волоконно-коаксиальных сетях кабельного телевидения до 1 ГГц). В сложных широкополосных сетях, когда имеется множество подключений коннекторов и другие оптические устройства (разветвители, WDM устройства, оптические усилители), такая обратная связь усиливается и приводит к росту уровня шума источника излучения. Наиболее кардинальный способ подавления обратного по­тока основан на использовании оптических изоляторов. Оптический изолятор обеспечивает пропускание света в одном направлении почти без потерь, а в другом (обратном) направле­нии с большим затуханием.

Вращение плоскости поляризации

В основе работы оптического изолятора лежит эффект Фарадея — вращение плоскости поляризации света оптически неактивными веществами под действием продольного магнит­ного поля.

Угол поворота плоскости поляризации равен q=VBZd, где V — постоянная Верде (Verdet) — удельное магнитное вращение, зависящая от природы вещества, температуры и длины волны света, ВZ — продольная составляющая индукции магнитного поля, d — длина пути света в веществе — размер ячейки Фарадея. Направление вращения зависит только от природы вещества и направления магнитного поля. Знак вращения отсчитывается для наблюдателя, смотрящего вдоль магнитного поля. Магнитное вращение плоскости поляризации обусловле­но возникновением асимметрии оптических свойств вещества под действием магнитного по­ля.

Зависимость вращения плоскости поляризации от длины волны света называется вра­щательной дисперсией. В первом приближении в области достаточно малых длин волн, уда­ленных от полос поглощения света веществом, угол вращения плоскости поляризации зави­сит от длины волны света l по закону Био: q

Принцип действия оптического изолятора

Оптический изолятор состоит из трех элементов:

-поляризатора 1 (входного поляризато­ра),

-Ячейки Фарадея 2,

-Анализатора 3 (выходного поляризатора). Параметры ячей­ки Фарадея выбираются так, чтобы ось поляризации света, проходящего через нее, развора­чивалась на 45°. Под таким же углом устанавливаются оси поляризаторов.

Входной полезный сигнал, проходя через поляризатор 1, оставляет свою вертикальную составляющую без изменения, устраняя горизонтальную составляющую, рис. 3.17 а. Далее вертикально поляризованный свет проходит через ячейку Фарадея 2, разворачивает плос­кость поляризации на 45° и беспрепятственно проходит через анализатор 3.

При распространении света в обратном направлении (рис. 3.17 б) он также поляризует­ся в плоскости анализатора 3, затем, проходя через ячейку Фарадея 2, становится горизон­тально поляризованным. Таким образом, оси поляризации света и поляризатора 1 составляют угол 90°, поэтому поляризатор 1 не пропускает обратное излучение.

Технические параметры

Основными требованиями, предъявляемыми к оптическому изолятору, являются малые вносимые потери в прямом направлении (

1-2 дБ) и высокая изоляция (потери при распро­странении обратного сигнала) в обратном направлении (>30 дБ). Кроме того, должны обес­печиваться прозрачность во всем диапазоне рабочих длин волн, стабильность параметров при изменении температуры. В диапазоне длин волн 1,3-1,55 мкм магнитооптическим мате­риалом, используемом в ячейке Фарадея, является Y3 Fe3 O12. На длине волны 0,85 мкм ис­пользуется парамагнитное стекло.

Читайте так же:  К мерам дисциплинарной ответственности адвоката относится

Схема оптического изолятора: а) полезный сигнал в прямом направле­нии проходит свободно; б) сигнал в обратном направлении по­глощается поляризатором; в) вид оптического изолятора (справа) рядом с лазерным диодом.

Оптические изоляторы часто интегрируются в лазерный передающий модуль. Высокая эффективность такого решения связана с тем, что выходной оптический сигнал от лазерного светодиода имеет эллиптическую поляризацию. Оптический изолятор устанавливается так, чтобы плоскость поляризации анализатора 1 совпадала с плоскостью поляризации макси­мальной составляющей выходного сигнала от лазерного светодиода.

Оптические изоляторы также являются неотъемлемой частью оптических усилителей на примесном волокне. В этом случае устанавливается пара оптических изоляторов — один на входе, другой на выходе оптического усилителя. Поскольку оптические усилители, как прави­ло, осуществляют усиление мультиплексного оптического сигнала, то необходимо, чтобы оп­тические изоляторы имели высокие характеристики во всем диапазоне длин волн, представленных в оптическом сигнале. Для этой цели используются специальные широкозонные опти­ческие изоляторы.

Технология WDM.

Устройство волнового (спектрального) уплотнения WDM — WDM фильтр — выполняет функции мультиплексирования MUX (объединения) или демультиплексирования DEMUX (вы­деления или фильтрации) оптических сигналов разных длин волн — каналов — в одно волокно из множества волокон или из одного волокна в несколько волокон. На передающей и прием­ной сторонах могут устанавливаться однотипные устройства, но работающие в режимах MUX и DEMUX соответственно. Сам факт существования устройств WDM основан на свойстве во­локна пропускать множество каналов, которые распространяются по волокну, не взаимодей­ствуя между собой, рис. 3.14.

Первые устройства WDM появились в начале 90-х годов. В основном это были широко­зонные двухканальные системы с длинами волн 1310 нм и 1550 нм. В дальнейшем по мере все большего освоения окна 1550 нм появляются прецизионные узкозонные WDM устройства с мультиплексируемыми длинами волн, полностью лежащими в окне 1550 нм. Это позволяет строить протяженные магистрали с множеством каналов на волокно. Катализатором прогрес­са становятся оптические усилители EDFA. Практически вся рабочая область длин волн (pass-band), в которой усилитель EDFA имеет достаточно высокий коэффициент усиления и прием­лемое отношение сигнал/шум (1530-1560 нм), отводится в распоряжение систем волнового уплотнения. Термин DWDM (dense wavelength division multiplexer) — плотное волновое мульти­плексирование — используется по отношению к WDM устройствам с расстоянием между со­седними каналами 1,6 нм и менее. Для построения многоканальных WDM систем наряду с пассивными WDM фильтрами также требуются узкополосные лазеры, стабильно выдержи­вающие нужную длину волны. Пока именно лазеры остаются наиболее дорогим элементом в таких системах, несколько сдерживая их развитие. В настоящее время поставляются системы с числом каналов 4, 8 и 16. Предполагается рост числа мультиплексных каналов до 32.

Технология WDM.

Терминология одинаково применима ко всем WDM устройствам. Поэтому начнем обсу­ждение с простейшего двухканального мультиплексора. Наряду с функцией объединения (рис. 3.15 а) устройства WDM также могут выполнять обратную функцию (функцию демульти­плексирования) — выделения сигналов разных длин волн из волокна, рис. 3,15 б. Большинст­во производимых WDM устройств совмещают режимы мультиплексирования и демультиплек­сирования в одном устройстве. Такие устройства могут также использоваться для мультип­лексирования и демультиплексирования двунаправленных потоков, рис. 3.15 в.

В идеале сигнал l1, поступающий на полюс 1 (рис. 3.15 а), должен полностью прохо­дить в общий выходной полюс 3 (common). На практике, однако, доля сигнала на длине волны l1 ответвляется и проходит через полюс 2. Аналогично, применительно к рис. 3.15 б, идеаль­ным было бы, если все 100% входной мощности сигнала l1, проходили через полюс 1 и на­оборот. И здесь такой эффективности демультиплексирования для любого из существующих WDM устройств достичь невозможно. Для оценки этих паразитных явлений используют поня­тие переходные помехи.

Переходные помехи показывают, насколько эффективна работа WDM устройства. Они состоят из ближних и дальних переходных помех. Ближние переходные помехи NEXT (near-end crosstalk или directivity) аналогичны коэффициенту направленности и определяются как доля мощности, регистрируемая на длине волны l1, на полюсе 2, соответствующем длине волны l2, при условии, что сигнал на длине волны l1, подается на полюс 1 (рис. 3.15 а).

Дальние переходные помехи FEXT (far-end crosstalk, также называют isolation) являются мерой изоляции между выходными полюсами по сигналам разных длин волн. Так, если сигнал поступает на длине волны l1, на полюс 3 (common), (рис. 3.15 б), то для него FEXT — это доля мощ­ности, регистрируемая на длине волны l1, на полюсе 2, соответствующем длине волны l2 мультиплексирования/ демультип­лексирования может иметь n входных/выходных полюсов 1, 2, . n, которым соответствуют длины волн l1, l2, …, ln, один общий выходной/входной полюс (com) соответственно, рис. 3.15 в. Будем обозначать такой модуль 1:n.

Введем следующие обозначения —

Pi(lk) — входной сигнал на длине волны lk, поступающий на полюс i;

Рi,j(lk) — выходной сигнал на длине волны lk, регистрируемый на входном полюсе j, при условии, что входной сигнал на длине волны lk поступает на полюс i (i¹j);

Pii(lk) — обратное рассеяние сигнала на длине волны lk, поступающего на полюс i;

Pi,com(lk) — выходной сигнал на длине волны lk, регистрируемый на сот-полюсе, при усло­вии, что входной сигнал на длине волны lk поступает на полюс i;

Pcom(lk) — годной сигнал на длине волны lk, поступающий на сот-полюс;

Pcom,j(lk) — выходной сигнал на длине волны lk, регистрируемый на выходном полюсе j, при условии, что входной сигнал на длине волны lk поступает на сот-полюс (j¹k);

В общем случае WDM модуль при работе в режиме

Pcom,com(lk) — обратное рассеяние сигнала на длине волны lk, поступающего на сот-полюс;

Pcom,k(lk) — выходной сигнал на длине волны lk, регистрируемый на выходном полюсе k (собственном), при условии, что входной сигнал на длине волны lk поступает на сот-полюс.

Коэффициенты ближних bNEXT, дальних bFEXT переходных помех, а также коэффициен­ты обратного рассеяния на ближнем и дальнем концах bNE и bFE определяются соотноше­ниями:

Коэффициенты передачи на ближнем aNE и дальнем аFE концах определяются соотно­шениями:

В общем случае WDM модуль 1:n можно описать набором из n матриц переходных ко­эффициентов (по одной матрице на каждую длину волны), где каждая матрица имеет размер­ность (n + 1)х(n +1).

Видео (кликните для воспроизведения).

Источник: http://megalektsii.ru/s17500t3.html

Принцип работы оптических устройств
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here